Beyond JavaScript: Building Stable Web Applications

JACK SWIGGETT, Stanford University

JavaScript is the dominant language in web application development, and
allows for the creation of powerful and cross-platform applications. How-
ever, as a dynamically typed language with a constantly expanding array
of features and a knack for concealing errors, JavaScript is often hard to
maintain in large applications. In this paper I explore two programming
languages, Elm and Reason, that provide an alternative to JavaScript for
writing web applications. Both benefit from advanced type systems and
functional design paradigms that seek to reduce bugs and improve code
quality. The two languages embrace a largely similar approach to web ap-
plication design, but each has advantages and disadvantages in terms of
language design, framework design, usefulness of errors, and available tool-
ing and documentation. I created the same simple web application using
both languages, and here I compare my experience with each throughout
the development process.

CCS Concepts: « Software and its engineering — Functional languages;
Domain specific languages; Data types and structures; Software libraries
and repositories;

Additional Key Words and Phrases: Web development, Elm, Reason, React

1 BACKGROUND

Most modern web applications are written using JavaScript. As a
dynamically typed, interpreted language, JavaScript makes it easy
to write code quickly and explore different ideas, without needing
to plan out the entire structure of an application. However, this
flexibility comes with drawbacks. It is often difficult to tell how data
is being passed around in web applications, and new developers
may have a hard time understanding an existing codebase. When
errors do arise, it is difficult to pinpoint and resolve them.

One approach to tackling this problem is to gradually introduce
static types into JavaScript. TypeScript and Flow are two projects
that try to do this. Both projects embrace JavaScript backwards-
compatibility, meaning that it is easy to take an existing JavaScript
codebase and annotate it over time in order to increase type safety.
This is a selling point for teams with lots of existing code, and
it means that developers can iterate quickly in early prototypes,
without worrying about types until later. However, it also means that
lazy developers can easily omit types, or that third-party libraries
may not provide them. As a result, it is very uncommon for projects
created in TypeScript or Flow to have full type coverage, and type
errors can still occur.

Because of this, many web developers are moving towards another
approach: write in an entirely different language that inherently
enforces type safety and code maintainability. Then compile from
that language into JavaScript so that the code can be run in a browser.
Elm and Reason are two languages built for that purpose.

© 2017 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in .

1.1 Elm

Elm is a programming language that was designed by Evan Czaplicki
in 2012. It is purpose-built for creating web applications, with the
intent of eliminating runtime errors and enforcing best practices.
Elm is a purely functional language, inspired by other functional
languages including Haskell and OCaml. Elm code compiles directly
to JavaScript.

1.2 Reason

Reason is actually a JavaScript-like syntax for OCaml, a functional
programming language that has existed for over twenty years. Rea-
son is developed in partnership with BuckleScript, a separate project
that provides a backend for the OCaml compiler to compile OCaml
into JavaScript. Compiling Reason code involves first converting it
into OCaml syntax, and then compiling that into JavaScript using
BuckleScript. For this project I also used ReasonReact, a library that
allows developers to write React]S code using Reason.

1.3 Project Goals

This project comprised two primary goals. First, I wanted to become
familiar with writing web applications using functional languages,
and write a simple web application using both Elm and Reason.
Before this quarter, I had never used a functional programming
language, much less written a web application in one. Second, I
wanted to compare the development experience using both lan-
guages. I wanted to compare various aspects of language design,
features, and tooling, in order to determine which of these two op-
tions would be a better choice for designing web applications in the
future. In that same vein, I wanted to compare writing code in Elm
and Reason to my previous experience developing web applications
in JavaScript, to see whether the benefits of shifting to a functional
language outweigh the drawbacks and justify the learning curve.

2 APPROACH

I built visually and functionally equivalent versions of the same
web application, using both Elm and Reason. I started from scratch
in both languages, and only made use of standard libraries and,
in the case of Reason, the ReasonReact library. Throughout the
development process, I took notes on the language features I used,
the errors I received, and my subjective assessment of the process
for developing in each language.

2.1 Application

The best way to have a realistic development experience is to build
an application that you actually want to use. I also wanted to build
something eccentric enough that I would be unlikely to find it as a
starting example for either language, but that would use a variety
of web application features. I do swing dancing for fun, so I built an
app to catalog and search swing dance moves. It has the following
features:

1:2 « Jack Swiggett

e Store a list of swing dance moves (the "catalog"). Each move
comprises a name, a list of tags describing that move, and a
list of URLs to online videos of people doing or teaching that
move.

o Allow the user to search the catalog by name or by a given
tag.

o Allow the user to specify a new name, list of tags, and list of
URLs, and add that move to the catalog.

o Allow the user to delete any move in the catalog.

2.2 Process

To begin, I read documentation and completed introductory tutorials
for both Elm and Reason, as well as ReasonReact, in order to get a
feeling for both languages/frameworks and how they are used to
create web applications. Then I designed a simple user interface for
the web application I wanted to build using Sketch. I duplicated this
same interface using vanilla HTML and CSS, in order to render a
static version of the website in a browser.

Once this was complete, I created Elm and Reason projects that
rendered that same static webpage (without any user interactivity).
Since both the Elm and Reason versions of the application are based
off the initial HTML/CSS implementation, they both create the exact
same HTML elements in the DOM and use the same style.css file.
I then created types in both languages to model the structure of the
application data (i.e. swing dance moves). Finally, I began working
on the brunt of the development process: rendering moves and user
interface elements based on an underlying model, and allowing
users to search, create, and delete moves.

2.3 Code

The HTML/CSS, Elm, and Reason code, as well as the compiled
JavaScript output from Elm and Reason, is available on GitHub at
https://github.com/jackswiggett/functional-web-apps. Instruc-
tions for running each web application are included there.

3 RESULTS: COMPARING ELM AND REASON
3.1 Getting Started

Both Elm and Reason were easy to get up and running. I was in-
stalling on Mac OS X. Elm provides an OS X installation package,
while Reason simply requires installing a global npm package. In
addition, both languages provide plugins for most major editors,
including Emacs, Vim, Sublime Text, Atom, and VS Code. Elm and
Reason also provide command line utilities that make it easy to set
up new projects and begin compiling and viewing code.

Both languages also offer a wide variety of tutorials and beginner
guides to bring new developers up to speed. However, Elm provides
an easy-to-use Read-Eval-Print Loop (REPL), whereas Reason does
not. Even though OCaml has this functionality, it has not been ported
to Reason. I found the Elm REPL very useful when learning the basics
of language syntax, exploring the types of various expressions, etc.,
and I wished I had the same tool for Reason. However, both projects
provide online tools to write and compile code in the browser, so
there is still an easy way to try out simple Reason programs.

eve® < [im] file:///Users/jackswiggett/Docum & i1} a | »
Name: |
e[70
Video URLs:
| i
Add to catalog
Catalog |
Swingout + 8-count, fundamentals, open to open Remove from catalog
o https://www.youtube.com/watch?v=tNJzu8nOl4g
o https://www.youtube.com/watch?v=I6N_2Ixg_Mk
o https://www.youtube.com/watch?v=88xB7bmia4Y
Tuck Turn « 6-count, fundamentals, closed to open Remove from catalog
o https://www.youtube.com/watch?v=ZIWFfNgsfnw
o https://www.youtube.com/watch?v=U4wp8EORODI
o https://www.youtube.com/watch?v=Q3ew4E_-8Ps

Fig. 1. The application user interface. The versions in pure HTML, Elm, and
Reason all look exactly the same.

3.2 Modeling Application Data

Both Elm and ReasonReact adopt an approach to modeling applica-
tion data built around actions and reducers. This approach is also
commonly used in React]S applications with libraries like Redux.
The state of the application (in this case, the moves in the catalog and
the contents of user input boxes) is stored as a record, potentially
with many fields and other nested records. Rather than modifying
this state directly, the application must trigger specific actions—for
example, RemoveFromCatalogById—which can include associated
data, e.g. the id of the move that should be removed from the catalog.
Any important user interactions, such as clicking buttons or editing
input boxes, trigger actions. Those actions are then processed by a
reducer function (called "reducer” in Reason and "update" in Elm).
That function receives the current state and the action, and returns a
new record containing the new state. It can make arbitrary changes
to the application state, but they must be deterministic, i.e. a certain
combination of input state and action must always lead to the same
output state.

This approach has many advantages. If your application is in an
unexpected state, it is easy to trace any actions that have occurred
to identify which one modified the state incorrectly. In addition,
it is possible to test the user interface independently from the ap-
plication logic, by manually setting the state and then rendering
the webpage. By itself, this provides a great advantage over vanilla
JavaScript applications, although libraries like Redux allow develop-
ers to replicate many of the same benefits in JavaScript.

https://github.com/jackswiggett/functional-web-apps

There is an important difference between the way application
data is modeled in Elm and in ReasonReact. Elm has a single record,
called the "model", which contains the state of the entire application.
Actions created inside any component will bubble up to the top level
reducer, which will then update the model. ReasonReact, however,
stores state at the level of an individual component. If a component
wants to modify the state of one of its parents, it must do so via
a callback. In my application, I chose to store the entire state in a
top-level Page component, and pass callbacks to sub-components
like CatalogMove that need to update that state. However, these
callbacks make the code less readable, and they could become in-
creasingly difficult to understand with deeply nested components.

I think that Elm’s approach is easier to use out of the box. Storing
the entire application state in one place is conceptually simple, and
makes it easy to debug code. Elm’s command-line development
server also provides a user interface to view the current application
state as well as its state at any time in the past, and the sequence of
actions that have modified it. On several occasions, I was able to fix
bugs right away because I saw that an action was not being triggered
correctly, or was not modifying the model as expected. That said, the
ReasonReact community does maintain a version of Redux, known
as Reductive, which provides single-source state management in
Reason. While this does require mixing two different ways of storing
application state, it also means that Reason developers have more
flexibility in how they structure their applications. This may be
attractive for some developers, although I personally found Elm’s
approach to be easier to work with.

I also ran into one particular point of confusion when working
with Reason. In order to use action/reducer systems, the applica-
tion state usually has to be immutable, so that it is easy to detect
which parts of the state have been modified and only re-render
corresponding parts of the DOM. In Elm, all values are immutable,
so the language inherently enforces this requirement, helping to
prevent bugs. In Reason, however, certain value are mutable. For
example, Js.Array.removeCountInPlace is a library function that
mutates an existing array by removing some number of elements at
a given index. I found that if T use that function inside a reducer to
modify a deeply nested part of the application state, the application
Ul is updated correctly, even though the state is still a reference to
the same record as before. As far as I can tell, this might work for
two reasons:

(1) ReasonReact happens to be checking the entire state in this
case, but it won’t always do so as the state gets more compli-
cated. I'm getting lucky right now, but this will lead to bugs
in the future.

(2) ReasonReact always checks the entire state before updating
the DOM, rather than only looking at parts of the state that
appear to have been modified. As the state becomes more
complicated, updates will become increasingly slow.

Neither of these is a good thing, and there may be a third expla-
nation that doesn’t lead to bugs or slow applications. However, I
haven’t been able to find one. The strict data immutability in Elm is
comforting when writing an application using the action/reducer
paradigm, and I wish that Reason had a similar guarantee so that I
didn’t have to worry about these issues.

Beyond JavaScript: Building Stable Web Applications « 1:3

3.3 Defining DOM Structure

Both Elm and ReasonReact provide a syntax for defining UI compo-
nents that maps directly to the DOM. In Elm, each component is a
function (e.g. div or span) that takes two arguments: its attributes
and its children. In Reason, components are defined using JSX syn-
tax, similar to React. Here is the same component defined in HTML,
Elm, and Reason:

HTML:
<div class="input-wrapper tag'">
<input class="input" type="text" />
<button class="delete-button">X</button>
</div>
Elm:
div [class "input-wrapper tag"]
[input [class "input", type_ "text" 1 []
, button [class "delete-button"] [text "X"]
1

Reason:

<div className="input-wrapper tag">
<input className="input" _type="text" />
<button className="delete-button">
(ReasonReact.stringToElement("X"))
</button>
</div>

Reason syntax is much easier to read if coming from an HTML
background, and even after spending a decent amount of time with
Elm, I still found it more difficult to parse visually, especially if the
DOM is large and complex. I think this is because in HTML/JSX it is
easy to find pairs of opening and closing tags, so the nested structure
of the DOM is immediately apparent. In Elm, there is no such thing
as a "closing tag", so it is harder to see that structure. However, Elm is
also conceptually simpler—you are simply calling functions without
introducing any special syntax. The compilation from Reason JSX to
OCaml also caused some confusing error messages, which I discuss
in the Error Messages section.

Another difference arises when breaking down the DOM structure
into smaller components. In Elm, you can simply define arbitrary
functions that take whatever parameters you like, and return a
DOM component. Reason, on the other hand, encourages you to
write special modules that inherit methods from the ReasonReact
library, and can be written directly into JSX in the same way as
default HTML tags, e.g. <CatalogMove />. Again, Elm’s approach
is conceptually simpler, while Reason’s approach is a little more
readable. However, I found both approaches to be fine in this case.

3.4 Type Systems

Elm and Reason have largely similar type systems. They both en-
sure that function arguments, return values, and other operators
are correctly typed, and raise compile time errors when they are
not, preventing a whole class of errors that can readily arise when
writing native JavaScript code. I found the strict typing to be very
refreshing—rather than slowing me down, it felt like I was able to
write code more quickly, since I did not have to worry about double

1:4 « Jack Swiggett

checking the types of function arguments or the names of record
fields after making a change.

Elm and Reason both support records (the equivalent of JavaScript
objects), algebraic data types including tuples and sum types (called
union types in Elm), type aliases, type inference, and optional
type annotations. Unlike Reason/OCaml, Elm does not support la-
beled function arguments. This was not a problem for me, but in
a more complicated application, labeled arguments could certainly
be convenient—although passing a record to the function might be
an equally good solution. Both languages also provide expressive
pattern matching syntax, and a compiler guarantee that all possible
values will be matched. My type definition for a swing dance move
in both languages is as follows:

Elm:
type alias Move =
{ id: Int

, hame: String
, tags: Array String
, urls: Array String

}

Reason:

type move = {
id: int,
name: string,
tags: array(string),
urls: array(string)

3

While these type definitions are very similar, the type systems of
the two languages do differ, especially when dealing with records.

In Elm, if you write

myFunc r = r.a + r.b

the compiler infers that the type of myFunc is
<function> : number } -> number

{a| a: number, b :

i.e. it infers that r is a record with two number fields, a and b.

However, if you write the equivalent function in Reason:

let myFunc = (r) => r.a + r.b;

you get a compilation error, Unbound record field a. This is

because in Reason, records cannot exist unless their structure has

an explicit type definition. The following Reason code compiles fine:

type recordType = { a: int, b: int };

let myFunc = (r) => r.a + r.b;

It isn’t necessary to give myFunc a type annotation—the compiler

will infer that its argument is of type recordType. However, that

type definition must exist somewhere, or the compiler will complain.
In addition, ElIm makes it easy to use nested records, either through

type inference or through an explicit type alias:

type alias RecordType = { a: { b: Int, c: Int } }

In Reason, writing

type recordType = { a: { b: int, c: int } };

results in an error, Record type is not allowed (which, inciden-

tally, is not a very useful error—see the Error Messages section for

more on error messages in the two languages). However, rewriting
the code in the following way eliminates the error message:

type subRecordType = { b: int, c: int };
type recordType = { a: subRecordType };

In Reason, nested records must have their own separate type defini-
tions.

Overall, Elm’s type system has the advantage of allowing devel-
opers to progressively build up code with complex record types,
without worrying about adding type annotations. This meshes with
Elm’s philosophy of writing first and adding type annotations later.
Reason requires you to plan ahead more if you want to use records,
but ultimately forces you to write more readable code and break
down your model into digestible parts, which improves code quality.
In my case, since I already knew the structure of my model, I did not
mind having to explicitly declare all my record types, and Reason
worked well for me. Generally speaking, I found both type systems
to be very expressive, and I don’t think either is clearly better.

I was, however, unhappy to learn that in order to write a simple
application in ReasonReact, I had to use code that is not type-safe.
Reason does not have a well-typed way to access the new value of a
text input inside the onChange listener. You must use a function like
the following, which is equivalent to accessing evt.target.value
in JavaScript:

let valueFromEvent = (evt) : string => (
evt
|> ReactEventRe.Form.target
|> ReactDOMRe.domElementToObj
Y#i#tvalue;

This function finds the DOM node that was the target of the event,
and retrieves its value property. However, Reason has no way to
know that this property is a string, except the type annotation on
the valueFromEvent function. If value is in fact of a different type,
the program could crash at runtime. I never had to do something
unsafe like this when using Elm, and I suspect that similarly unsafe
constructs might arise in other common situations when using
Reason (although I did not run into any).

3.5 Language Syntax

Elm has a syntax reminiscent of other functional languages. There
are no parentheses around function arguments and no semicolons,
and it makes use of let ... in statements. Reason, while only a
thin layer on top of OCaml, strives to have a syntax much closer
to JavaScript. let statements are followed by semicolons, function
arguments are surrounded by parentheses, and code blocks are
surrounded by curly braces. Functions are defined using the "ar-
row function" syntax introduced in ECMAScript 6. Coming from
a JavaScript background, I found Reason’s syntax to be more wel-
coming and readable. I think that especially for teams transitioning
from JavaScript, this is a selling point, since it makes the mapping
from imperative to functional concepts easier to see.

That said, once I was used to Elm’s syntax, I found it to be just as
easy to work with (apart from defining the structure of the DOM,
where I found JSX to be more readable). Using JavaScript syntax also
comes with some trade-offs. For example, functions in Reason that

take multiple arguments look like "normal" JavaScript functions.
For example:

let myFunc = (a, b) => a + b;

However, this function is curried under the hood, and it is perfectly
valid to partially apply it:

let partiallyAppliedFunc = myFunc(10);

For a JavaScript developer, the original function definition is easy to
understand, but the partially applied function could be very confus-
ing. Since syntax is new from the beginning in Elm, developers are
more likely to realize that function application works differently,
and less likely to be confused by function calls.

Another area where both languages are lacking is an immutable
update syntax to change a field that is deeply nested within a record.
This is a use case that arises frequently when writing programs using
the action/reducer paradigm. When writing JavaScript code, Redux
provides a combineReducers function that makes it easy to update
a complicated application state with a deeply nested structure, and
do so without mutating any objects. Elm and Reason both have
simple syntax to immutably update a record and change fields at the
top level, but updates to nested fields become much uglier. Below
is the syntax I use to update the application state when the user
changes the name of a move. In both cases, name refers to the new
name entered by the user, and we want to update the state so that
state.draft.name is equal to this new name.

Elm:

let draft = model.draft in
let newDraft = { draft | name = name } in
({ model | draft = newDraft }, Cmd.none)

Reason:

let draft = { ...(state.draft), name };
ReasonReact.Update({ ...state, draft })

Both languages require multiple lines to make this change, and
if name were nested further, the update would become even more
complicated.

3.6 Error Messages

Elm s a clear winner in this area. Elm’s error messages were friendlier,
easier to understand, and more consistent than Reason’s error mes-
sages. Both languages make an effort to provide readable error

messages. For example, in Elm, writing

myVar = if (1 < 2) then "one" else 2

leads to the following error message:

Beyond JavaScript: Building Stable Web Applications « 1:5

Detected errors in 1 module.

-- TYPE MI - index.elm

The branches of this “if" produce different types of values.

6| myvar = (1 < 2) then "one" else 2

“then® branch has type:
String

the “else” branch i
number

Hint: These need to match so that no matter which branch we take, we always get
back the same type of value.

In Reason, writing
let myvar = if (1 < 2) { "one" } else { 2 };

leads to the following error message:

We've found a bug for you!

/Users/jackswiggett/Documents/Stanford/4-Senior/1-Fall/CS242/reason/src/page

1 | let myvar = if (1 < 2) { "one" } else { 2 };
This has type:

int
But somewhere wanted:

You can convert a to a with

Both messages clearly show the section of code that caused the
error, explain why the error occurred, and provide hints as to how
to resolve it. However, in practice I often ran into much less friendly
error messages when using Reason. For example, if I had forgotten
the parentheses in the if statement and instead written

let myvar = if 1 <2 { "one" } else { 2 };

I would have gotten the following error

FAILED: src/page.mlast
/Users/jackswiggett/.nvm/versions/node/v8.9.1/1ib/node_modules/bs—platform/lib/bs
c.exe -pp "/Users/jackswiggett/.nvm/versions/node/v8.9.1/1ib/node_modules/bs-plat
form/lib/refmt3.exe --print binary" -ppx '/Users/jackswiggett/.nvm/versions/node/
v8.9.1/1ib/node_modules/bs-platform/lib/reactjs_jsx_ppx_2.exe"' -w —30-40+6+7+27
+32..39+44+45+101 -bs-suffix -nostdlib -I '/Users/jackswiggett/Documents/Stanford
/4-Senior/1-Fall/CS242/reason/node_modules/bs-platform/lib/ocaml' -no-alias-deps
-color always -c -o src/page.mlast -bs-syntax-only -bs-binary-ast -impl /Users/ja
ckswiggett/Documents/Stanford/4-Senior/1-Fall/CS242/reason/src/page.re

File "/Users/jackswiggett/Documents/Stanford/4-Senior/1-Fall/CS242/reason/src/pag
e.re", line 1, characters 16-17:

Error: 489: <UNKNOWN SYNTAX ERROR>

File "/Users/jackswiggett/Documents/Stanford/4-Senior/1-Fall/CS242/reason/src/pag
e.re", line 1, characters 0-0:

Error: Error while running external preprocessor

Command line: /Users/jackswiggett/.nvm/versions/node/v8.9.1/1ib/node_modules/bs-p
latform/lib/refmt3.exe ——print binary '/Users/jackswiggett/Documents/Stanford/4-S
enior/1-Fall/CS242/reason/src/page.re' > /var/folders/3d/rgspr8615tdcwy7k1lb6q7hd@
0000gn/T/ocamlpp38e33a

This error is cluttered and difficult to process. The bold text does
not even show the correct location of the syntax error—it is written
in unbolded text above. And the error message is XUNKNOWN SYNTAX
ERROR>. In practice, I frequently saw unknown syntax errors while
working in Reason, whereas I never saw an error message from Elm
that wasn’t easy to process and act on.

Reason also caused some cryptic errors due to the process of
converting from JSX to OCaml. For example, I ran into the following
error during development:

1:6 « Jack Swiggett

We've found a bug for you!

238 = <div className="flex-line">

239

240 ReasonReact.stringToElement ("Name:")
241

242 <div className="input-wrapper">

You're missing arguments: string

This error occurred because in JSX, ReasonReact . stringToElement

and ("Name: ") are interpreted as two different children of the span,
rather than as a function call. This is immediately clear from the
compiled OCaml code:

((span
~className: "input-label"
~children:[ReasonReact.stringToElement; "Name:"]
O)rersx

We can see that ReasonReact.stringToElement is missing the
string argument. Wrapping the function call in parentheses solves
the problem:

(ReasonReact.stringToElement ("Name:"))

In this case, the Reason compiler eagerly exclaims "we’ve found a
bug for you", but the error message provides no useful insight into
how to fix the bug. While Elm’s error messages felt friendly, I grew
to hate Reason’s overzealous "we’ve found a bug" message.

3.7 Libraries and Documentation

Both languages provide fairly robust standard libraries. One con-
fusing aspect of Reason is that its primary standard library is a
one-to-one port of the OCaml standard library—but it also provides
direct interfaces to the JavaScript standard library. For example,
you can retrieve the length of an array with Array.length, or with
Js.Array.length. Certain functions only exist in one library or
the other, and it was sometimes confusing to have to look in several
different places. Elm provides a single set of core libraries that are
easier to understand and navigate. While the Js.* libraries feel
tacked on to Reason, all of Elm’s libraries feel native.

Both languages provide fairly detailed documentation of their
standard libraries. In Reason, developers can also look at other
OCaml references and translate the syntax from OCaml to Reason.
That said, the Elm documentation is generally easier to read and
provides clearer examples. In addition, the Js. * libraries in Reason
provide almost no documentation except the type signature of each
function. This can be very confusing, since many JavaScript standard
library functions take a variable number of arguments, something
which is not possible in Reason, and these have often been split into
multiple different functions with different names in order to allow
for inclusion or omission of certain arguments.

3.8 JavaScript Interoperability

I did not have to interface directly with JavaScript when developing
this application. However, this is obviously a priority for teams
that want to gradually add functional components to an application
currently written in JavaScript, or need to use JavaScript libraries
from within Elm or Reason.

3.8.1 Elm. A piece of user interface written in Elm can be easily
embedded in some larger program by simply loading that Elm pro-
gram into a given DOM element. For example, you could load aMain
module from Elm into <div id="main></div> with the following
code. The main. js file is the compiled code generated by Elm.

<script src="main.js"></script>

<script>
var node = document.getElementById('main');
var app = Elm.Main.embed(node);

</script>

Elm provides two ways to communicate with JavaScript. First, "flags"
can be passed to the E1m.Main.embed function. These are arbitrary
key/value pairs that can be used to configure the Elm module when
it is initialized. Second, Elm provides an API to send and receive
messages to/from JavaScript, through what are known as "ports".
Thus Elm code can request that a JavaScript library process some
data or perform an action, and receive a message once that action is
complete. Data sent through ports is strictly typed, and allows for a
wide variety of possible data types. Elm validates the type signature
of any data sent from the JavaScript side, so that a runtime error
will be thrown in JavaScript if a port is used incorrectly, and invalid
data will never make it to the Elm part of the application.

3.8.2 Reason. Reason also makes it easy to embed components
in a larger JavaScript application. As with Elm,

ReactDOMRe.renderToElementWithId

can be used to load a Reason component inside an arbitrary div. In
addition, ReasonReact provides helper functions, wrapJsForReason
and wrapReasonForJs, that make it easy to use ReasonReact com-
ponents inside React]S and vice versa.

While Elm abstracts away interaction with JavaScript code and
emphasizes type safety, Reason makes it easy to add arbitrary (and
unsafe) JavaScript in the middle of a program:

Js.log("This is Reason");

[%%bs.raw {]|
console.log('This is raw JavaScript');

[31;

Raw blocks of JavaScript can return values back to Reason. By
default, any values returned back to Reason have a special type that
will unify with any other type, meaning that they can be used right
away without any type annotation, but all the benefits of Reason
type checking are lost. The developer can provide a type annotation,
but if that annotation is incorrect, the program could of course crash
at runtime.

Reason provides some other slightly more elegant methods for
calling JavaScript functions and executing code, but they all involve
directly using JavaScript values within Reason, rather than using a
type-safe messaging interface like Elm does. This approach certainly
makes it easier to quickly include JavaScript code and prototype an
application. However, I imagine that it would lead to more errors,
and more confusing errors, in the long run.

4 RESULTS: QUANTITATIVE METRICS

I wrote roughly the same amount of code in both languages. Ex-
cluding comments and blank lines, I have 232 lines of Elm code and
262 lines of Reason code, which I do not consider to be a significant
difference.

Isaw a much larger difference in the size of the compiled JavaScript
output. The output from Reason was 976 KB, whereas the output
from Elm was only 218 KB. This is almost certainly primarily due
to the libraries included in the compiled output. It’s possible that
the Reason output includes JavaScript ports of many OCaml library
functions, whereas the Elm API is optimized to make use of native
JavaScript libraries where possible, which could contribute to the
size disparity. However, that’s only a conjecture.

After minifying the compiled JavaScript, the output from Reason
had a total size of 296 KB, whereas the output from Elm had a total
size of 76 KB.

I did not notice any appreciable difference in the performance of
the two web applications. Both ran very quickly. A more performance-
intensive use case would be needed in order to see whether one of
the two languages leads to better rendering speed or performance.

5 CONCLUSION

Both Elm and Reason provide many advantages over writing JavaScript

web applications. They make it easier to iterate without worrying
about introducing subtle bugs, and they help enforce good code qual-
ity. They both enforce an action/reducer system for dealing with
application state, which makes it easy to pin down bugs and keep
the application well-organized. While they have comparable type
systems and language features, Elm generally has much better error
messages than Reason. It also has a simpler standard library, and
higher-quality documentation. Reason, however, has a syntax that
is much friendlier to developers used to working with JavaScript
and HTML. Ultimately, choosing one framework over the other
will depend on the project at hand and the past experience of team
members. Many of the benefits gained by writing in Elm and Rea-
son can also be achieved by using a library such as Redux, and by
being strict about adding type annotations with Flow or TypeScript.
However, especially for new projects where developers are willing
to try something different, I think that Elm and Reason are both
very good choices for web application development.

6 REFERENCES
The Elm website has tutorials, examples, and documentation for the
Elm programming language: http://elm-lang.org/.

The Reason website has tutorials, examples, and documentation for
the Reason programming language: https://reasonml.github.io/.

Information about ReasonReact is available at https://reasonml.
github.io/reason-react/.

T also made use of a ReasonReact tutorial by Jared Forsyth, available
at https://jaredforsyth.com/2017/07/05/a-reason-react-tutorial/.

Information about Redux, a JavaScript library for managing applica-
tion state that works similarly to Elm and ReasonReact, is available
at https://redux.js.org/.

Beyond JavaScript: Building Stable Web Applications

1:7

http://elm-lang.org/
https://reasonml.github.io/
https://reasonml.github.io/reason-react/
https://reasonml.github.io/reason-react/
https://jaredforsyth.com/2017/07/05/a-reason-react-tutorial/
https://redux.js.org/

	Abstract
	1 Background
	1.1 Elm
	1.2 Reason
	1.3 Project Goals

	2 Approach
	2.1 Application
	2.2 Process
	2.3 Code

	3 Results: Comparing Elm and Reason
	3.1 Getting Started
	3.2 Modeling Application Data
	3.3 Defining DOM Structure
	3.4 Type Systems
	3.5 Language Syntax
	3.6 Error Messages
	3.7 Libraries and Documentation
	3.8 JavaScript Interoperability

	4 Results: Quantitative Metrics
	5 Conclusion
	6 References

